U.G. 3rd Semester Examination - 2020 ZOOLOGY [HONOURS]

Course Code: ZOOL-H-CC-T-07

Full Marks : 40 Time : $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

- 1. Answer any **five** of the following: $2 \times 5 = 10$
 - a) What are the major non-covalent bonds involved in stabilizing protein structure?
 - b) How many ATPs will be produced from complete oxidation of a 79 carbon fatty acid?
 - c) How temperature affects enzyme kinetics equation?
 - d) Why pentose phosphate pathway is also called HMP shunt?
 - e) Name two inhibitors and two uncouplers of Electron Transport System.
 - f) Draw a labelled diagram of clover leaf model of t-RNA.

[Turn over]

- g) What are the products of Kreb's cycle for every pyruvate molecule?
- 2. Answer any **two** of the following: $5 \times 2 = 10$
 - a) What is fattfy acid activation? Enumerate the roles of enzymes involved in beta-oxidation of fatty acids.

 1+4
 - b) What is the link between Kreb's cycle and Urea cycle? Why urea cycle is referred to as Urea bicycle? Provide flowchart. 2+3
 - c) Write short note on nucleotide metabolism.
 - d) How Lineweaver-Burk-Plot is derived from M-M-equation?
- 3. Answer any **two** of the following: $10 \times 2 = 20$
 - a) What are the components of ETS? Show diagrammatically how they are arranged on membrane. What is the role of NADH-shuttle in ETS? Describe oxidative phosphorylation and roles of F_0 – F_1 particles in it. 2+2+2+4
 - b) Compare purines and pyrimidines. Describe the structure of B-DNA. How Z-DNA differs from it? What is hyperchromacity? 2+5+1+2
 - c) Describe the induced fit model for enzyme structure. Classify enzymes according to

reaction specificity. How EC numbers are plotted for enzymes? Write briefly about 'competetive reversible' and 'non-competitive irreversible' enzyme inhibition. 2+2+2+4

- d) Write briefly about the following: 2×5
 - i) Isoelectric pH
 - ii) Significance of gluconeogenesis
 - iii) Deamination
 - iv) Isoenzyme
 - v) V_{max}
